

Pages

Metal extraction and the reactivity series

Evidence for the reactivity series

Displacement reactions of metal oxides

Displacement reactions of solutions

Metal extraction and the reactivity series

Metals are extracted from ores, which are minerals found in the Earth's crust that contain metal compounds. Examples of ores (1) include:

- haematite (Fe₂O₃)
- bauxite (Al₂O₃)

• galena (PbS)

The method used to extract a metal from its ore depends upon the stability of its compound (1) in the ore, which in turn depends upon the reactivity (1) of the metal.

- **Very reactive** metals, such as aluminium, form **stable** oxides and other compounds. Electrolysis (i) is commonly used to extract these metals and requires a lot of electric current (energy) to reduce (i) them to extract the metal.
- Less reactive metals, such as iron, form less stable oxides and other compounds. Reduction with carbon is often used to extract these metals and requires less energy to reduce them to extract the metal.

Therefore, the method of extraction of a metal from its ore depends on the metal's position in the reactivity series.

Reactivity and extraction method

The table displays some metals in decreasing order of reactivity and the methods used to extract them.

Metal	Method		
Potassium	Electrolysis		
Sodium	Electrolysis		
Calcium	Electrolysis		
Magnesium	Electrolysis		
Aluminium	Electrolysis		
(Carbon)	(Non-metal)		
Zinc	Reduction by carbon or carbon monoxide		
Iron	Reduction by carbon or carbon monoxide		
Tin	Reduction by carbon or carbon monoxide		
Lead	Reduction by carbon or carbon monoxide		
(Hydrogen)	(Non-metal)		
Copper	Various chemical reactions		
Silver	Various chemical reactions		
Gold	Various chemical reactions		

Metal	Method	
Platinum	Various chemical reactions	

Metals more reactive than carbon, such as aluminium, are extracted by electrolysis, while metals less reactive than carbon, such as iron, may be extracted by reduction with carbon.

As gold is so unreactive, it is found as the native metal and not as a compound. It does not need to be chemically separated. **However**, chemical reactions may be needed to remove other elements that might contaminate the metal.

Next page >

Evidence for the reactivity series

More guides on this topic

Redox, extraction of iron and transition metals

Electrolysis and extraction of aluminium

Electrolysis extended content [GCSE Chemistry only]

Related links

Home	Earth	Travel	Music	Sounds			
News	Reel	Culture	τv				
Sport	Worklife	Future	Weather				
Terms of Use	About the BBC	Privacy Policy Co	ookies Accessibility Help	Parental Guidance	Contact the BBC		
Get Personalised Newsletters		Why you can trust the	BBC Advertise with us	Do not share or sell my info			
© 2024 BBC. The BBC is not responsible for the content of external sites. Read about our approach to external linking.							