"Grade or Education" = 1

CHEM 2261/01 Summer 08 Exam 3 Chapters 7-9

1. Find the substitution product(s) of the reaction of (2S,3R)-2-chloro-3-methylpentane + high concentration of CH₃O⁻ from among the numbered structures shown below. Choose the <u>CORRECT</u> statement from the multiple choices.

- $_$ A. $\underline{1}$ is the sole product of this reaction.
- $_$ B. $\underline{3}$ is the sole product of this reaction.
- __ C. 2 is the sole product of this reaction.
- __ D. 2 and 4 are both products of this reaction.
- $_$ E. $\underline{4}$ is the sole product of this reaction.

Rationale:

Chapter 8 Problem 52b

2. What two compounds could be used to produce the compound whose structure is shown below from a Diels-Alder reaction?

Pick the structures of the two compounds which can be used in this Diels-Alder reaction from the numbered choices below.

- $_$ A. Compounds $\underline{5}$ and $\underline{6}$ can be used in this reaction.
- $_$ B. Compounds $\underline{1}$ and $\underline{2}$ can be used in this reaction.
- __ C. Compounds 4 and 6 can be used in this reaction.
- $_$ D. Compounds $\underline{3}$ and $\underline{5}$ can be used in this reaction.
- $_$ E. Compounds $\underline{3}$ and $\underline{4}$ can be used in this reaction.

Rationale:

Chapter 7 Problem 64b

3. Find the elimination product(s) of (2S,3R)-2-chloro-3-methylpentane + high concentration of CH₃O among the numbered structures below. Choose the CORRECT product of this reaction.

- $\underline{\hspace{0.1cm}}$ A. $\underline{\hspace{0.1cm}}$ and $\underline{\hspace{0.1cm}}$ are both products of this reaction.
- $_$ B. $\underline{4}$ is the product of this reaction.
- $\underline{}$ C. $\underline{2}$ is the product of this reaction.
- $\underline{\hspace{0.1cm}}$ D. $\underline{\hspace{0.1cm}}$ is the product of this reaction.
- $_$ E. $\underline{3}$ is the product of this reaction.

Rationale:

Chapter 9 Problem 48b

4. Rank the compounds whose structures are shown below in order of INCREASING acid strength (weakest acid listed first).

- $A. \quad 1 < 3 < 2$
- __ B. 1 < 2 < 3
- __ C. 3 < 2 < 1
- __ D. 3 < 1 < 2
- __ E. 2 < 1 < 3

Rationale:

Chapter 7 Problem 18

5. Choose the $\underline{\text{CORRECT}}$ substitution product of the reaction of 3-bromo-2-methylpentane + CH_3OH from the numbered structures shown below.

- $_$ A. $\underline{4}$ is the product of this reaction.
- $_$ B. $\underline{5}$ is the product of this reaction.
- $\underline{}$ C. $\underline{3}$ is the product of this reaction.
- $_$ D. $\underline{1}$ is the product of this reaction.
- __ E. 2 is the product of this reaction.

Rationale:

Chapter 8 Problem 45e

6. For the target compound whose structure is shown below choose the multistep synthesis which could be used to prepare it from the given starting material.

- __ A. First: Br₂/CH₂Cl₂; Next: excess ·NH₂; Finally: H₂SO₄/HgSO₄
- $_$ B. First: Br₂/CH₂Cl₂; Next: excess $^{\circ}$ NH₂; Finally: 1. disiamylborane and 2. HO $^{\circ}$, H₂O₂, H₂O
- __ C. First: HBr/CH₂Cl₂; Next: 'NH₂; Finally: 1. BH₃/THF and 2. HO⁻, H₂O₂, H₂O
- __ D. First: Br₂/CH₂Cl₂; Next: excess ·NH₂; Finally: H₂SO₄/H₂O
- $_$ E. First: Br₂/H₂O; Next: \cdot NH₂

Rationale:

Chapter 9 Problem 31b

7. Find the kinetic and thermodynamic products of the reaction of one equivalent of HCl with 2,3-dimethyl-1,3-pentadiene among the numbered structures below. Choose the <u>CORRECT</u> statement from the multiple choices.

- __ A. 4 is the kinetic product and 1 is the thermodynamic product.
- __ B. 1 is the kinetic product and 4 is the thermodynamic product.
- $\underline{}$ C. $\underline{}$ is the kinetic product and $\underline{}$ is the thermodynamic product.
- __ D. 2 is the kinetic product and 3 is the thermodynamic product.
- __ E. 3 is the kinetic product and 2 is the thermodynamic product.

Rationale:

Chapter 7 Problem 68a

8. Rank the ions whose structures are shown below in order of <u>DECREASING</u> nucleophilicity in methanol (strongest nucleophile listed first).

- $A. \quad 2 > 3 > 1$
- __ B. 1 > 3 > 2
- __ C. 1 > 2 > 3
- __ D. 3 > 2 > 1
- __ E. $\frac{2}{1} > \frac{3}{1}$

Rationale:

Chaptr 8 Problem 42a

9. Shown below is a curved-arrow mechanism for converting structure $\underline{1}$ into structure $\underline{5}$. Which structure has the curved arrow(s) associated with it drawn INCORRECTLY?

- __ A. <u>3</u>
- __ B. <u>5</u>
- __ C. <u>4</u>
- __ D. <u>1</u>
- __ E. <u>2</u>

Rationale:

Chapter 8 Problem 62a

10. Two curved-arrow mechanisms are shown for the reaction of 4-bromocyclohexanol with HO to form substitution products. Figure out the substitution mechanism(s) for the reaction of cis-4-bromocyclohexanol and trans-4-bromocyclohexanol with HO to form product(s). Choose the <u>CORRECT</u> statement from the multitple choices.

- __ A. cis-4-bromocyclohexanol undergoes mechanism 2.
- __ B. Neither cis-4-bromocyclohexanol nor trans-4-bromocyclohexanol undergo mechanism 2.
- $\underline{}$ C. cis-4-bromocyclohexanol undergoes mechanism $\underline{}$.
- __ D. trans-4-bromocyclohexanol cannot react by either mechanism.
- __ E. Both cis-4-bromocyclohexanol and trans-4-bromocyclohexanol undergo mechanism 1.

Rationale:

Chapter 9 Problem 55a

11. Use the numbered structures shown below to choose the <u>CORRECT</u> statement from the multiple choices.

- $_$ A. $(CH_3)_3CBr$ will react faster with CH_3CH_2OH than it will with H_2O .
- __ B. $(CH_3)_2CHS^2$ will react faster with $\underline{1}$ than CH_3S^2 will.
- __ C. 3 will not react with HO.
- __ D. $\underline{5}$ will react with H₂O faster than $\underline{4}$ will.
- __ E. 2 will react with HO faster than 3 will.

Rationale:

Chapter 8 Problem 48

- __ A. structure 4
- __ B. structure 3
- __ C. structure 5
- __ D. structure 2
- __ E. structure 1

Rationale:

Chapter 7 Problem 3

13. Name the dienes shown below and rank them in order of INCREASING stability (name of least stable diene listed first).

- __ A. 1,5-pentanediene < 2,5-pentanediene < 2,5-hexanediene < 2,5-dimethyl-2,5-hexanediene
- __ B. 1,4-pentadiene < 1,3-pentadiene < 2,4-hexadiene < 2,5-dimethyl-2,4-hexadiene
- __ C. 1,3-pentadiene < 2,4-hexadiene < 1,4-pentadiene < 2,5-dimethyl-2,4-hexadiene
- __ D. 2,5-dimethyl-2,4-hexadiene < 2,4-hexadiene < 1,3-pentadiene < 1,4-pentadiene
- __ E. 2,5-dimethyl-2,5-hexanediene < 2,5-hexanediene < 2,5-pentanediene < 1,5-pentanediene

Rationale:

Chapter 7 Problem 10

14. Figure out what the major elimination product(s) obtained from E2 reactions of hydroxide ion and the alkyl halides with structures $\underline{1}$ and $\underline{2}$ are. Choose the statement which is $\underline{\text{CORRECT}}$ from the multiple choices.

- __ A. $\underline{1}$ reacts with hydroxide to give $\underline{3}$ as the major E2 product and $\underline{2}$ reacts with hydroxide to give $\underline{4}$ as the major E2 product.
- __ B. Both 1 and 2 react with hydroxide to give 3 as the major E2 product.
- __ C. Both $\underline{1}$ and $\underline{2}$ react with hydroxide to give $\underline{4}$ as the major E2 product.
- __ D. $\underline{1}$ reacts with hydroxide to give $\underline{4}$ as the major E2 product and $\underline{2}$ reacts with hydroxide to give 3 as the major E2 product.
- __ E. <u>1</u> and <u>2</u> react with hydroxide to give E2 products which are not shown in the structures above.

Rationale:

Chapter 9 Problem 4(b,f)

15. By looking at the numbered structures below find the <u>major</u> elimination product(s) of a mixture of the two stereoisomers of trans-1-chloro-2-methylcyclohexane for the conditions specified in each of the multiple choices. Choose the <u>CORRECT</u> statement.

- __ A. trans-1-chloro-2-methylcyclohexane + high concentration of CH₃O yields 2.
- __ B. trans-1-chloro-2-methylcyclohexane + high concentration of CH₃O yields 1 and 2.
- __ C. trans-1-chloro-2-methylcyclohexane + CH₃OH yields 2 and 3.
- __ D. trans-1-chloro-2-methylcyclohexane + high concentration of CH₃O yields 1 and 3.
- __ E. trans-1-chloro-2-methylcyclohexane + CH_3OH yields $\underline{1}$ and $\underline{3}$.

Rationale:

Chapter 9 Problem 38 (c,d)

Answer Key

"Grade or Education" = 1

CHEM 2261/01 Summer 08 Exam 3 Chapters 7-9

- 1. C
- 2. A
- 3. E
- 4. E
- 5. D
- 6. B
- 7. D
- 8. A
- 9. E
- 10. A
- 11. D
- 12. B
- 13. B
- 14. A
- 15. D