"Grade or Education" = 1

CHEM 2261/01 Summer 09 Exam 1 Chapters 1-3

1. Look at the curved-arrow reaction mechanisms shown below. Which reactions have the curved arrows drawn **CORRECTLY**?

CH₃C-O-H + HO:
$$\longrightarrow$$
 CH₃C-O + H₂O:
reaction **a**

CH₃C·OH + H-O-H
$$\longrightarrow$$
 CH₃C·OH + H₂O H reaction **c**

- __ A. All are correct.
- __ B. Only reaction **a** is correct.
- __ C. None are correct.
- __ D. reaction **b** and reaction **d**
- __ E. reaction a and reaction c

Rationale:

Chapter 3 Problem 20

2. Which of the numbered structures shown below is (3E,5E)-2,5-dibromo-3,5-octadiene?

Br
$$CH:CH$$
 $CH:CH$
 C

- __ A. **2**
- __ B. **1**
- __ C. None of these structures is correct.
- __ D. **4**
- __ E. **3**

Rationale:

Chapter 3 Problem 54

3. Look at the three Newman projections below labelled **a**, **b**, and **c**. Choose the statement which is completely **CORRECT** about one of these projections.

- __ A. Structure **c** is the most stable conformation of 3-methylpentane, viewed along the C2-C3 bond.
- __ B. Structure **a** is the most stable conformation of 3,3-dimethylhexane, viewed along the C3-C4 bond.
- __ C. Structure **a** is the most stable conformation of 3-methylhexane, viewed along the C3-C4 bond.
- __ D. Structure **b** is the most stable conformation of 3,3-dimethylhexane, viewed along the C3-C4 bond.
- __ E. Structure **b** is the most stable conformation of 3-methylhexane, viewed along the C3-C4 bond.

Rationale:

Chapter 2 Problem 36

4. Add the missing lone pairs and formal charges to the four incomplete Lewis structures shown below. Choose the **CORRECT** statement about one of the completed structures from the multiple choices.

- __ A. When structure **D** is completed its nitrogen atom has one lone pair and a positive charge.
- __ B. When structure **A** is completed its carbon atom has no lone pairs and a positive charge.
- __ C. When structure **A** is completed its oxygen atom has 1 lone pair and a positive charge.
- __ D. When structure **C** is completed its oxygen atom has 3 lone pairs and a negative charge.
- __ E. When structure **B** is completed its oxygen atom has 1 lone pair and a negative charge.

Rationale:

Chapter 1 Problem 83

5. Choose a **CORRECT** systematic name for following alkane.

- __ A. 4-butyl-2,7,8-trimethylnonane
- __ B. 2,3,8-trimethyl-6-butylnonane
- __ C. 6-isobutyl-2,3-dimethyldecane
- __ D. 2,7,8-trimethyl-4-butylnonane
- __ E. 6-butyl-2,3,8-trimethylnonane

Rationale:

Chapter 2 Problem 66h

- 6. Which of the following statements is **CORRECT**?
 - __ A. Hexylamine has a higher boiling point than dipropylamine.
 - __ B. 1-bromopentane has a higher boiling point than 1-bromohexane.
 - __ C. 1-Methoxypentane has a higher boiling point than 1-hexanol.
 - __ D. 1-Pentanol has greater solubility in water than 1-butanol.
 - __ E. Isopentyl chloride has a higher boiling point than pentyl chloride.

Rationale:

Chapter 2 Problem 56 (a,b,c,d,k)

- 7. Water and diethyl ether are immiscible liquids. In a vessel containing both water and ether charged compounds dissolve in water, and uncharged compounds dissolve in ether. Given that $C_6H_{11}COOH$ has a pKa of 4.8 and $C_6H_{11}NH_3^+$ ion has a pKa of 10.7, which of the following statements is **TRUE**?
 - __ A. If the pH of the water layer is below 2.8 the amine will dissolve in the water layer and the carboxylic acid will dissolve in the ether layer.
 - __ B. If the pH of the water layer is below 2.8 both compounds will dissolve in the ether layer.
 - __ C. If the pH of the water layer is between 6.8 and 8.7 both compounds will dissolve in the ether layer.
 - __ D. If the pH of the water layer is above 12.7 the amine will dissolve in the water layer and the carboxylic acid will dissolve in the ether layer.
 - __ E. If the pH of the water layer is above 12.7 both compounds will dissolve in the water layer.

Rationale:

Chapter 1 Problem 103

8. Which of the compounds whose structures are shown below have the E configuration?

$$H_3C$$
 CH_2CH_3 $C=C$ $C=C$ $CH_2CH_2CH_2CH_3$ $C=C$ CH_3CH_2 $CH_2CH_2CH_3$ CH_3CH_2 CH_3CH_3 CH_3 CH_3

$$H_3C$$
 $CH(CH_3)_2$ CH_3 CH_2Br $C=C$ $CH_2CH=CH_2$ CH_2CH_2CI $CH_2CH=CH_2$ CH_2CH_2CI $CH_2CH=CH_2$ CH_2CH_2CI

- __ A. All of the above compounds have the E configuration.
- __ B. Only the compound with structure D has the E configuration.
- __ C. The compounds with structures B and C have the E configuration.
- __ D. The compounds with structures A and D have the E configuration.
- __ E. None of the above compounds have the E configuration.

Rationale:

Chapter 3 Problem 48

- 9. Draw the two chair conformers of cis-1-ethyl-4-isopropylcyclohexane. Circle the most stable conformer. Choose the statement which is **TRUE** about the structure of the **MOST STABLE** conformer of this compound.
 - __ A. Both conformers of this compound are equally stable.
 - __ B. Both the ethyl group and the isopropyl group are axial.
 - __ C. Both the ethyl group and the isopropyl group are equatorial.
 - __ D. The isopropyl group is axial and the ethyl group is equatorial.
 - __ E. The ethyl group is axial and the isopropyl group is equatorial.

Rationale:

Chapter 2 Problem 67f

10.	Draw a reaction-coordinate diagram for the following reaction in which C is the most stable and B is
	the least stable of the three species and the transition state going from A to B is more stable than the
	transition state going from B to C. Choose the CORRECT statement from the multiple choices.

$$A \stackrel{k_1}{=} B \stackrel{k_2}{=} C$$

- __ A. There are three intermediates in this reaction.
- __ B. There are two intermediates in this reaction.
- __ C. The step which converts B to A is the rate-determining step in the reverse direction.
- __ D. The step which converts B to C is the rate-determining step in the forward direction.
- __ E. There is one transition state in this reaction.

Rationale:

Chapter 3 Problem 35

- 11. Several studies have shown that β -carotene, a precursor of vitamin A, may play a role in preventing cancer. β -Carotene has a molecular formula of $C_{40}H_{56}$ and contains two rings and no triple bonds. How many double bonds does it have?
 - __ A. 22
 - __ B. 12
 - __ C. 16
 - __ D. 11
 - __ E. 8

Rationale:

Chapter 3 Problem 46

12. Use the pKa table below to figure out which of the reactions shown below is written so that the equilibrium does **NOT** lie in the direction indicated (the equilibrium favors reactants rather than products).

ACID	рК _а	ACID	рКа
CH ₃ OH	15.5	CH ₃ OH ₂ ⁺	-2.5
H_2O	15.7	CH ₃ NH ₂	40
H_3O^+	-1.7	CH ₃ NH ₃ ⁺	10.7
NH_4^+	9.4	HCl	-7

$$--$$
 A. $CH_3OH + HO^- \rightarrow CH_3O^- + H_2O$

__ B.
$$CH_3NH_2 + H_3O^+ \rightarrow CH_3NH_3^+ + H_2O$$

$$-$$
 C. $CH_3NH^- + H_2O \rightarrow CH_3NH_2 + HO^-$

$$--$$
 D. $NH_3 + H_2O \rightarrow NH_4^+ + HO^-$

__ E.
$$CH_3OH_2^+ + H_2O \rightarrow CH_3OH + H_3O^+$$

Rationale:

Chapter 1 Problem 48

13. Figure out the number of hydrogens attached to each of the numbered carbon atoms in the following compound. Choose the **CORRECT** statement from the multiple choices.

- __ A. The carbon atom numbered **9** has 3 hydrogens attached to it.
- __ B. The carbon atom numbered **2** has 1 hydrogen attached to it.
- __ C. The carbon atom numbered **3** has 2 hydrogens attached to it.
- __ D. The carbon atom numbered 1 has 4 hydrogens attached to it.
- __ E. The carbon atom numbered **9** has 1 hydrogen attached to it.

Rationale:

Chapter 2 Problem 11

14. Choose the answer which correctly gives the hybridization of the indicated atoms in the compounds below.

- $__$ A. sp² in compound a, sp in compound b, sp² in compound c, sp in compound d, sp² in compound e, and sp² in compound f
- __ B. sp^3 in compound a, sp^3 in compound b, sp^4 in compound c, sp^2 in compound d, sp^3 in compound e, and sp^4 in compound f
- __ C. sp² in compound a, sp² in compound b, sp³ in compound c, sp in compound d, sp² in compound e, and sp³ in compound f
- __ D. sp² in compound a, sp in compound b, sp in compound c, sp in compound d, sp in compound e, and sp in compound f
- __ E. sp³ in compound a, sp in compound b, sp² in compound c, sp in compound d, sp² in compound e, and sp² in compound f

Rationale:

Chapter 1 Problem 82

- 15. Draw Lewis structures for NO_3^- , NO_2^+ , HCO_3^- , and H_2CO . Choose the **CORRECT** statement about one of these structures.
 - A. The Lewis structure of HCO₃ has an O-H single bond, two C-O single bonds and a C=O double bond; one of the oxygen atoms has a negative charge.
 - $_$ B. The Lewis structure of H_2CO has 2 O-H single bonds and a C=O double bond; the O atom has 3 lone pairs.
 - -- C. The Lewis structure of NO_3 has 2 N=O double bonds and 1 N-O single bond; the N atom has a negative charge.
 - D. The Lewis structure of NO₃ has 3 N-O single bonds; each oxygen has 2 lone pairs and the nitrogen has a negative charge.
 - $_$ E. The Lewis structure of NO_2 ⁺ has 2 N-O single bonds; each oxygen has 3 lone pairs and the nitrogen has a positive charge.

Rationale:

Chapter 1 Problem 14(a,b,g,h)

Answer Key

"Grade or Education" = 1

CHEM 2261/01 Summer 09 Exam 1 Chapters 1-3

- 1. D
- 2. E
- 3. E
- 4. D
- 5. C
- 6. A
- 7. A
- 8. C
- 9. E
- 10. D
- 11. D
- 12. D
- 13. E
- 14. C
- 15. A