"Grade or Education" = 1

CHEM 2261/01 Summer 10 Exam 4 Chapters 10, 11, 14

1. How many alkyl halides can be obtained from the monochlorination of the alkane shown below? Neglect stereoisomers.

$$\begin{array}{ccc} \operatorname{CH}_3 & \operatorname{CH}_3 \\ \operatorname{CH}_3\operatorname{C-CH}_2\operatorname{C++CH}_3 \\ \operatorname{CH}_3 & \operatorname{CH}_3 \end{array}$$

- __ A. 3
- __ B. 5
- __ C. 2
- __ D. 1
- __ E. 4

Rationale:

similar to Chapter 12 Problem 4i

2. Pick the choice which **CORRECTLY** describes how the following synthesis could be carried out. Note the abbreviations used in the multiple choices for several reagents or solvents whose structures are shown below the synthesis.

- __ A. First: **TsCI**/pyridine; Next: **EO**; Finally: HO / H₂O
- __ B. First: TsCI/pyridine; Next: CH₂=CHMgBr; Next: RCO₃H; Finally: H+/H₂O
- __ C. First: HBr/Δ ; Next: Mg/Et_2O ; Finally: 1. **EO**, and 2. H^+
- __ D. First: HBr; Next: Mg/**Et₂0**; Next: **AcCI**; Finally: H₂/Pd
- __ E. First: **TsCI**/pyridine; Next: HOCH₂CH₂MgBr

Rationale:

Chapter 11 Problem 25b

3. Pick the choice which **CORRECTLY** describes how the following synthesis could be carried out. Note the abbreviations used in the multiple choices for several reagents or solvents whose structures are shown below the synthesis.

- -- A. First: Br₂/h_v; Next: tert-Bu0 ; Next: Br₂/CH₂Cl₂; Next NaNH₂ (excess); Finally: H+/H₂O
- -- B. First: Br₂/h_v; Next: tert-Bu0 ; Next: RCO₃H; Finally: HO
- __ C. First: Br_2/hv ; Next: Mg/Et_2O ; Next: EO; Finally: H^+/H_2O
- -- D. First: Br₂/hv; Next: HO ; Next: H₂CrO₄; Next: **RCO₃H**; Finally: HO
- __ E. First: Br₂/hv; Next: tert-Bu0 ; Next: E0; Finally: H0

Rationale:

Chapter 12 Problem 19d

4. Figure out which alcohol in each of the pairs shown below will undergo dehydration more rapidly when heated with H_2SO_4 . Pairs of alcohols share the same letter, ie, **a1** and **a2**. Choose the **CORRECT** statement from the multiple choices.

- __ A. a1 will undergo dehydration more rapidly than a2 when heated with H₂SO₄.
- __ B. **c2** will undergo dehydration more rapidly than **c1** when heated with H_2SO_4 .
- __ C. None of the other choices is correct..
- __ D. **d2** will undergo dehydration more rapidly than **d1** when heated with H_2SO_4 .
- $__$ E. **b1** will undergo dehydration more rapidly than **b2** when heated with H_2SO_4 .

Rationale:

5. Find the major products of the reaction of 1-methylcyclohexene with the reagents specified in the multiple choices. Choose the response which **CORRECTLY** matches one or more structures below with a particular reaction. Ignore stereochemistry.

- __ A. Products 1 and 2 are major products of the reaction of 1-methylcyclohexene with Br_2/CH_2CI_2 .
- __ B. Product 4 is the major product of the reaction of 1-methylcyclohexene with NBS/ Δ /peroxide.
- $_$ C. Products 3 and 4 are major products of the reaction of 1-methylcyclohexene with Br_2/CH_2CI_2 .
- __ D. Product 3 is the major product of the reaction of 1-methylcyclohexene with HBr/peroxide.
- __ E. Product 3 is the major product of the reaction of 1-methylcyclohexene with HBr.

Rationale:

Chapter 11 Problem 18

6. By looking at the numbered structures below figure out which of the multiple choices specifies the **CORRECT** product of a reaction.

$$--$$
 A. **1** + CH₃O $^{-}$ /CH₃OH \rightarrow **2**

__ B. **1** + H⁺/CH₃OH
$$\rightarrow$$
 2

__ C. **1** +
$$H^+/CH_3OH \rightarrow$$
 4

$$--$$
 D. **1** + CH₃O $\overline{\ }$ /CH₃OH → **4**

— E. **1** + CH₃O
$$^{-}$$
/CH₃OH → **3**

Rationale:

Chapter 10 Problem 33(d,e)

7. Figure out the names of the five compounds whose structures are shown below. Choose the one which is **CORRECTLY** named in the multiple choices.

- __ A. Compound f is toluene.
- __ B. Compound **g** is anisole.
- __ C. Compound **a** is phenol.
- __ D. Compound **e** is styrene.
- __ E. Compound **c** is phenylnitrile.

Rationale:

Chapter 15 Problem 35(a,c,e,f,g)

8. Classify each of the five numbered structures below as aromatic, nonaromatic, or antiaromatic. (Hint: If possible a ring will be nonplanar to avoid being antiaromatic.) Choose the **CORRECT** statement.

- __ A. **3** and **5** are antiaromatic.
- __ B. **5** is antiaromatic.
- __ C. **1**, **3**, and **5** are aromatic.
- __ D. **1** is nonaromatic.
- __ E. **2**, **4**, and **6** are aromatic.

Rationale:

similar to Chapter 15 Problem 36

9. Work out the curved-arrow mechanism for the rearrangement reaction shown below.

Which of the numbered curved-arrow mechanistic processes shown below is **NOT** part of your mechanism?

__ A. **4**

__ B. **1**

__ C. **5**

__ D. **2**

__ E. **3**

Rationale:

Chapter 10 Problem 59a

10. Work out the curved-arrow mechanism for the rearrangement reaction shown below.

Which of the numbered curved-arrow mechanistic processes shown below is **NOT** part of your mechanism?

__ A. 2

__ B. **1**

C. 4

__ D. **3**

__ E. **5**

Rationale:

similar to Chapter 15 Problem 47a

11. Which of the choices lists the reactions shown below in order of **DECREASING** speed (ie. fastest reaction > intermediate speed reaction > slowest reaction)?

Reaction A

$$\begin{array}{c|c} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$$

Reaction B

$$\begin{array}{c|c} & & & \\ & & & \\ \hline \\ \\ & \\ \hline \\ \\ \end{array}$$

Reaction C

- __ A. Reaction B>Reaction C>Reaction A
- __ B. Reaction C>Reaction B>Reaction A
- __ C. Reaction A>Reaction B>Reaction C
- __ D. Reaction A>Reaction C>Reaction B
- __ E. Reaction B> Reaction A> Reaction C

Rationale:

Chapter 10 Problem 60

12. Find the major product(s) of the reaction shown below. Ignore stereochemistry.

$$CH_3$$
 + NBS Δ peroxide ?

- __ A. 2 and 4 are the major products of this reaction.
- __ B. **3** is the major product of this reaction.
- __ C. **3** and **4** are the major products of this reaction.
- __ D. 1, 2, and 5 are the major products of this reaction.
- __ E. 1, 3, and 5 are the major products of this reaction.

Rationale:

Chapter 12 Problem 26c

13. Choose the **CORRECT** structure of the product of the reaction shown below.

- __ A. **2**
- __ B. **5**
- __ C. **4**
- __ D. **1**
- __ E. **3**

Rationale:

moved to Chapter 16

14. Examine the reaction mechanism shown below for the conversion of **REAC46a** into **PROD46a**. Based on this mechanism what is the **CORRECT** structure of **PROD46b**?

__ A. **4**

__ B. **1**

__ C. **2**

__ D. **3**

__ E. **5**

Rationale:

Chapter 15 Problem 51b

15. Part of the mechanism is shown for the reaction in the figure below. Which of the choices **BEST** describes what happens in the very next step of the mechanism (not shown)?

$$RO - + HCCI_3 \longrightarrow ROH + CCI_3$$

- __ A. The 8-membered ring radical abstracts a hydrogen atom from an ROH molecule.
- __ B. The lone electron (radical) in the position represented by the rightmost resonance structure attacks the more remote double bond on the exact opposite side of the 8-membered ring forming a structure with two connected 5-membered rings.
- __ C. The radical on the 8-membered ring attacks a peroxide molecule attaching an OR group to the ring.
- __ D. A 1,2 shift of a hydrogen atom occurs, moving the free radical electron one position further counterclockwise along the 8-membered ring.
- __ E. The 8-membered ring radical abstracts a hydrogen atom from an HCCl₃ molecule.

Rationale:

Answer Key

"Grade or Education" = 1

CHEM 2261/01 Summer 10 Exam 4 Chapters 10, 11, 14

- 1. E
- 2. C
- 3. B
- 4. D
- 5. D
- 6. D
- 7. C
- 8. E
- 9. C
- 10. E
- 11. A
- 12. A
- 13. E
- 14. D
- 15. B