"Grade or Education" = 1 CHEM 2261/01 Summer 12 Exam 4 Chapters 10, 11, 12, 15 1. Which of the choices describes a **CORRECT** way to carry out the synthesis suggested in the figure below? - __ A. First react with OH⁻ and the oxidize with H₂CrO₄. - __ B. First eliminate HBr with t-BuO $^-$. Next generate terminal alcohol with BH₃/THF followed by OH $^-$ /H₂O₂/H₂O. Finally oxidize with PCC (pyridinium chlorochromate). - __ C. First eliminate HBr with t-BuO $^-$. Next generate alcohol with H₂SO4₂/H₂O. Finally oxidize with H₂CrO₄. - __ D. First react with OH⁻ and the oxidize with PCC (pyridinium chlorochromate). - __ E. First eliminate HBr with t-BuO⁻. Next generate alcohol with H₂SO4₂/H₂O. Finally oxidize with PCC (pyridinium chlorochromate). ### Rationale: Chapter 10 Problem 45b 2. Work out the mechanism for the reaction shown in the figure below. Which of the numbered sets of electron movements shown below the reaction does **NOT** occur in this mechanism? - A. 4 - B. 7 - __ C. 1 - __ D. 3 - __ E. 2 Rationale: Chapter 10 Problem 66a | 3. S | Starting with | (R)-1 | l -deuterio-1 | -propanol | how | could y | you pre | epare | (S)- | -1-deu | iterio-1 | -propanol | ? | |------|---------------|-------|---------------|-----------|-----|---------|---------|-------|------|--------|----------|-----------|---| |------|---------------|-------|---------------|-----------|-----|---------|---------|-------|------|--------|----------|-----------|---| - __ A. First react with NaH followed by CH₃I to convert the alcohol to a methyl ether. Next react the methyl ether with NaOH to convert the methyl ether back to the alcohol with inversion of configuration. - $_$ B. First react with NaH followed by CH $_3$ I to convert the alcohol to a methyl ether. Next cleave the methyl ether with HI to make an iodide. Finally react the iodide with OH $^-$ to turn the iodide back into an alcohol with inversion of configuration via an S $_N$ 2 reaction. - __ C. First react with H_2SO_4 to dehydrate the alcohol and generate an alkene. Next react with BH_3/THF followed by $H_2O_2/H_2O/OH^-$ to make a terminal alcohol. - __ D. First react with a sulfonyl chloride (RSO₂Cl) in pryidine to make a sulfonate ester out of the alcohol, and then react with hydroxide (HO⁻) to convert the ester back into an alcohol with inversion of configuration. - __ E. First oxidize the alcohol to an aldehyde with PCC (pyridinium chlorochromate). Next reduce the aldehyde back to the alcohol with inversion of configuration with H₂/Pd/C. ### Rationale: Chapter 10 Problem 36a 4. Find the major product of the reaction shown below. Ignore stereochemistry. - __ A. **3** is the major product of this reaction. - __ B. 1 is the major product of this reaction. - __ C. **5** is the major products of this reaction. - $_$ D. **4** is the major product of this reaction. - __ E. **2** is the major product of this reaction. ### Rationale: Chapter 12 Problem 22c 5. Find the correct **MAJOR** product(s) of the reaction below and choose the answer which suggests the **CORRECT** product(s). $$CH_3$$ $CH_3C = CH \cdot CH_3 + NBS$ O peroxide - __ A. Only compound 3 is a product of this reaction. - __ B. Compounds 1, 2 and 3 are all products of this reaction. - __ C. Compounds 2 and 4 are both products of this reaction. - __ D. Only compound 4 is a product of this reaction. - __ E. Compounds 1 and 2 are both products of this reaction. Rationale: Chapter 12 Problem 22b 6. Pick the choice which **CORRECTLY** describes how the following synthesis could be carried out. Note the abbreviations used in the multiple choices for several reagents or solvents whose structures are shown below the synthesis. - __ A. First: 'NH₂; Next: Br₂/CH₂Cl₂; Next: 'NH₂(excess); Next: 1. 'NH₂, and 2. HOCH₂CH₂Br; Finally: H₂/Pd - __ B. First: HO⁻/H₂O; Next: **TsCI**/pyridine; Next: CH₂=CHMgBr; Next: **RCO₃H**; Next: H⁺/H₂O; Finally: **PCC** - __ C. First: Mg/Et₂O; Next: 1. EO, and 2. H+; Finally: PCC - __ D. First: HO⁻/H₂O; Next: **TsCI**/pyridine; Next: HOCH₂CH₂MgBr; Finally: **PCC** - __ E. First: HO-/H₂O; Next: **TsCI**/pyridine; Next: CH₂=CHMgBr; Next: **RCO₃H**; Next: HO-/H₂O; Finally: **PCC**; Rationale: Chapter 11 Problem 29a 7. Choose structure of the **MAJOR** product of the reaction shown below. - __ A. **2** - __ B. **4** - __ C. **5** - __ D. **3** - __ E. **1** Rationale: Chapter 12 Problem 32f 8. Which of the reactions specified in the multiple choices gives the **CORRECT** product? Use the labelled structures below for reference. -- A. **c** + H₂SO₄/ $$\Delta$$ → **6** $$-$$ B. **b** + HI/ Δ → **4** + CH₃OH $$-$$ D. i/Δ → (CH₃)₂NCH₂CH₃ + **7** $$-$$ E. **a** + HBr/Δ → **1** + CH₃CH₂Br Rationale: Chapter 10 Problem 38(a,b,c,i) 9. Which of the choices gives the **CORRECT** structure of the major product of the reaction of 2-ethyloxirane with the reagents specified? Use the numbered product structures below for reference. - __ A. 0.10 M NaOH gives product **3**. - $_$ B. CH₃OH/CH₃O gives product **2**. - $_$ C. CH₃OH/HCl gives product **2**. - $_$ D. CH₃OH/HCl gives product **1**. - __ E. 0.10 M HCl gives HOCH₂CH₂OH. Rationale: 10. How could the following compound be prepared using cyclohexene as a starting material? - __ A. First react the cyclohexene with a peracid (RCO₃H). Next react with CH₃CH₂MgBr followed by aqueous HCl. Finally dehydrate with H₂SO₄. - __ B. First react the cyclohexene with BH_3/THF followed by $HO^-/H_2O_2/H_2O$. Next form a sulfonate ester with RSO $_2$ Cl. Finally substitute the ethyl group for the sulfonate ester by reacting with CH_3CH_2MgBr . - __ C. First react the cyclohexene with Br_2/CH_2CI_2 . Next react with $Mg/(CH_3CH_2)_2O$. Finally react with $CH_2=CH_2$ and $Pd(OAc)_2$. - __ D. React the cyclohexene with CH_3CH_2Br in the presence of a $Pd(OAc)_2$ catalyst to carry out thye synthesis in one step via a Heck reaction. - __ E. First react the cyclohexene with Br_2/H_2O . Next form a Grignard reagent with $Mg/(CH_3CH_2)_2O$. Next add the ethyl group by reacting the Grignard reagent with CH_3CH_2Br . Finally dehydrate with H_2SO_4 to regenerate the alkene. Rationale: Chapter 10 Problem 2a 11. Figure out the names of the five compounds whose structures are shown below. Choose the one which is **CORRECTLY** named in the multiple choices. - __ A. Compound **f** is toluene. - __ B. Compound **c** is phenylnitrile. - __ C. Compound **e** is styrene. - __ D. Compound **a** is phenol. - __ E. Compound **g** is anisole. ### Rationale: Chapter 15 Problem 35(a,c,e,f,g) ### 12. Choose the **CORRECT** structure of the **MAJOR** product of the reaction shown below. shown below. - __ A. **2** - __ B. **1** - __ C. **3** - __ D. **4** - __ E. **5** Rationale: Chapter 11 Problem 28c 13. Choose the **CORRECT** structure of the **MAJOR** product of the reaction shown below. - __ A. **4** is the major product of this reaction. - __ B. **1** is the major product of this reaction. - __ C. **2** is the major product of this reaction. - __ D. **5** is the major product of this reaction. - __ E. **3** is the major product of this reaction. ### Rationale: Chapter 11 Problem 22f 14. Pick the choice which describes how the compound with the structure shown below could be synthesized from benzene. - __ A. React benzene with CH₃CH₂CH₂CH₂CH₂Cl and AlCl₃. - __ B. First react benzene with $CH_3CH_2CH_2CH_2C(=0)CI$ and $AICI_3$. Next react with NH_2NH_2/HO^- . - __ C. First react benzene with Br₂/FeBr₃. Next react with (CH₃CH₂CH₂CH₂CH₂) ₂CuBr. - __ D. First react benzene with $Br_2/FeBr_3$. Next react with $CH_3CH_2CH_2CH_2CH_2Br$ and $Pd(OAc)_2/HO^-$. - __ E. React benzene with $CH_3CH_2CH_2CH_2CH_2B(OR)_2$ and $Pd(OAc)_2/HO^-$. Rationale: 15. Classify each of the five numbered structures below as aromatic, nonaromatic, or antiaromatic. (Hint: If possible a ring will be nonplanar to avoid being antiaromatic.) Choose the **CORRECT** statement. - __ A. **1**, **3**, and **5** are aromatic. - __ B. **3** and **5** are antiaromatic. - __ C. **2**, **4**, and **6** are aromatic. - __ D. **1** is nonaromatic. - __ E. **5** is antiaromatic. ### Rationale: Chapter 15 Problem 36 ## Answer Key # "Grade or Education" = 1 CHEM 2261/01 Summer 12 Exam 4 Chapters 10, 11, 12, 15 - 1. A - 2. D - 3. D - 4. D - 5. C - 6. C - 7. B - 8. C - 9. B - 10. A - 11. D - 12. A - 13. E - 14. B - 15. C