"Grade or Education" = 1

CHEM 2261/01 Summer 12 Exam 4 Chapters 10, 11, 12, 15

1. Which of the choices describes a **CORRECT** way to carry out the synthesis suggested in the figure below?

- __ A. First react with OH⁻ and the oxidize with H₂CrO₄.
- __ B. First eliminate HBr with t-BuO $^-$. Next generate terminal alcohol with BH₃/THF followed by OH $^-$ /H₂O₂/H₂O. Finally oxidize with PCC (pyridinium chlorochromate).
- __ C. First eliminate HBr with t-BuO $^-$. Next generate alcohol with H₂SO4₂/H₂O. Finally oxidize with H₂CrO₄.
- __ D. First react with OH⁻ and the oxidize with PCC (pyridinium chlorochromate).
- __ E. First eliminate HBr with t-BuO⁻. Next generate alcohol with H₂SO4₂/H₂O. Finally oxidize with PCC (pyridinium chlorochromate).

Rationale:

Chapter 10 Problem 45b

2. Work out the mechanism for the reaction shown in the figure below. Which of the numbered sets of electron movements shown below the reaction does **NOT** occur in this mechanism?

- A. 4
- B. 7
- __ C. 1
- __ D. 3
- __ E. 2

Rationale:

Chapter 10 Problem 66a

3. S	Starting with	(R)-1	l -deuterio-1	-propanol	how	could y	you pre	epare	(S)-	-1-deu	iterio-1	-propanol	?
------	---------------	-------	---------------	-----------	-----	---------	---------	-------	------	--------	----------	-----------	---

- __ A. First react with NaH followed by CH₃I to convert the alcohol to a methyl ether. Next react the methyl ether with NaOH to convert the methyl ether back to the alcohol with inversion of configuration.
- $_$ B. First react with NaH followed by CH $_3$ I to convert the alcohol to a methyl ether. Next cleave the methyl ether with HI to make an iodide. Finally react the iodide with OH $^-$ to turn the iodide back into an alcohol with inversion of configuration via an S $_N$ 2 reaction.
- __ C. First react with H_2SO_4 to dehydrate the alcohol and generate an alkene. Next react with BH_3/THF followed by $H_2O_2/H_2O/OH^-$ to make a terminal alcohol.
- __ D. First react with a sulfonyl chloride (RSO₂Cl) in pryidine to make a sulfonate ester out of the alcohol, and then react with hydroxide (HO⁻) to convert the ester back into an alcohol with inversion of configuration.
- __ E. First oxidize the alcohol to an aldehyde with PCC (pyridinium chlorochromate). Next reduce the aldehyde back to the alcohol with inversion of configuration with H₂/Pd/C.

Rationale:

Chapter 10 Problem 36a

4. Find the major product of the reaction shown below. Ignore stereochemistry.

- __ A. **3** is the major product of this reaction.
- __ B. 1 is the major product of this reaction.
- __ C. **5** is the major products of this reaction.
- $_$ D. **4** is the major product of this reaction.
- __ E. **2** is the major product of this reaction.

Rationale:

Chapter 12 Problem 22c

5. Find the correct **MAJOR** product(s) of the reaction below and choose the answer which suggests the **CORRECT** product(s).

$$CH_3$$
 $CH_3C = CH \cdot CH_3 + NBS$
 O
peroxide

- __ A. Only compound 3 is a product of this reaction.
- __ B. Compounds 1, 2 and 3 are all products of this reaction.
- __ C. Compounds 2 and 4 are both products of this reaction.
- __ D. Only compound 4 is a product of this reaction.
- __ E. Compounds 1 and 2 are both products of this reaction.

Rationale:

Chapter 12 Problem 22b

6. Pick the choice which **CORRECTLY** describes how the following synthesis could be carried out. Note the abbreviations used in the multiple choices for several reagents or solvents whose structures are shown below the synthesis.

- __ A. First: 'NH₂; Next: Br₂/CH₂Cl₂; Next: 'NH₂(excess); Next: 1. 'NH₂, and 2. HOCH₂CH₂Br; Finally: H₂/Pd
- __ B. First: HO⁻/H₂O; Next: **TsCI**/pyridine; Next: CH₂=CHMgBr; Next: **RCO₃H**; Next: H⁺/H₂O; Finally: **PCC**
- __ C. First: Mg/Et₂O; Next: 1. EO, and 2. H+; Finally: PCC
- __ D. First: HO⁻/H₂O; Next: **TsCI**/pyridine; Next: HOCH₂CH₂MgBr; Finally: **PCC**
- __ E. First: HO-/H₂O; Next: **TsCI**/pyridine; Next: CH₂=CHMgBr; Next: **RCO₃H**; Next: HO-/H₂O; Finally: **PCC**;

Rationale:

Chapter 11 Problem 29a

7. Choose structure of the **MAJOR** product of the reaction shown below.

- __ A. **2**
- __ B. **4**
- __ C. **5**
- __ D. **3**
- __ E. **1**

Rationale:

Chapter 12 Problem 32f

8. Which of the reactions specified in the multiple choices gives the **CORRECT** product? Use the labelled structures below for reference.

-- A. **c** + H₂SO₄/
$$\Delta$$
 → **6**

$$-$$
 B. **b** + HI/ Δ → **4** + CH₃OH

$$-$$
 D. i/Δ → (CH₃)₂NCH₂CH₃ + **7**

$$-$$
 E. **a** + HBr/Δ → **1** + CH₃CH₂Br

Rationale:

Chapter 10 Problem 38(a,b,c,i)

9. Which of the choices gives the **CORRECT** structure of the major product of the reaction of 2-ethyloxirane with the reagents specified? Use the numbered product structures below for reference.

- __ A. 0.10 M NaOH gives product **3**.
- $_$ B. CH₃OH/CH₃O gives product **2**.
- $_$ C. CH₃OH/HCl gives product **2**.
- $_$ D. CH₃OH/HCl gives product **1**.
- __ E. 0.10 M HCl gives HOCH₂CH₂OH.

Rationale:

10. How could the following compound be prepared using cyclohexene as a starting material?

- __ A. First react the cyclohexene with a peracid (RCO₃H). Next react with CH₃CH₂MgBr followed by aqueous HCl. Finally dehydrate with H₂SO₄.
- __ B. First react the cyclohexene with BH_3/THF followed by $HO^-/H_2O_2/H_2O$. Next form a sulfonate ester with RSO $_2$ Cl. Finally substitute the ethyl group for the sulfonate ester by reacting with CH_3CH_2MgBr .
- __ C. First react the cyclohexene with Br_2/CH_2CI_2 . Next react with $Mg/(CH_3CH_2)_2O$. Finally react with $CH_2=CH_2$ and $Pd(OAc)_2$.
- __ D. React the cyclohexene with CH_3CH_2Br in the presence of a $Pd(OAc)_2$ catalyst to carry out thye synthesis in one step via a Heck reaction.
- __ E. First react the cyclohexene with Br_2/H_2O . Next form a Grignard reagent with $Mg/(CH_3CH_2)_2O$. Next add the ethyl group by reacting the Grignard reagent with CH_3CH_2Br . Finally dehydrate with H_2SO_4 to regenerate the alkene.

Rationale:

Chapter 10 Problem 2a

11. Figure out the names of the five compounds whose structures are shown below. Choose the one which is **CORRECTLY** named in the multiple choices.

- __ A. Compound **f** is toluene.
- __ B. Compound **c** is phenylnitrile.
- __ C. Compound **e** is styrene.
- __ D. Compound **a** is phenol.
- __ E. Compound **g** is anisole.

Rationale:

Chapter 15 Problem 35(a,c,e,f,g)

12. Choose the **CORRECT** structure of the **MAJOR** product of the reaction shown below. shown below.

- __ A. **2**
- __ B. **1**
- __ C. **3**
- __ D. **4**
- __ E. **5**

Rationale:

Chapter 11 Problem 28c

13. Choose the **CORRECT** structure of the **MAJOR** product of the reaction shown below.

- __ A. **4** is the major product of this reaction.
- __ B. **1** is the major product of this reaction.
- __ C. **2** is the major product of this reaction.
- __ D. **5** is the major product of this reaction.
- __ E. **3** is the major product of this reaction.

Rationale:

Chapter 11 Problem 22f

14. Pick the choice which describes how the compound with the structure shown below could be synthesized from benzene.

- __ A. React benzene with CH₃CH₂CH₂CH₂CH₂Cl and AlCl₃.
- __ B. First react benzene with $CH_3CH_2CH_2CH_2C(=0)CI$ and $AICI_3$. Next react with NH_2NH_2/HO^- .
- __ C. First react benzene with Br₂/FeBr₃. Next react with (CH₃CH₂CH₂CH₂CH₂) ₂CuBr.
- __ D. First react benzene with $Br_2/FeBr_3$. Next react with $CH_3CH_2CH_2CH_2CH_2Br$ and $Pd(OAc)_2/HO^-$.
- __ E. React benzene with $CH_3CH_2CH_2CH_2CH_2B(OR)_2$ and $Pd(OAc)_2/HO^-$.

Rationale:

15. Classify each of the five numbered structures below as aromatic, nonaromatic, or antiaromatic. (Hint: If possible a ring will be nonplanar to avoid being antiaromatic.) Choose the **CORRECT** statement.

- __ A. **1**, **3**, and **5** are aromatic.
- __ B. **3** and **5** are antiaromatic.
- __ C. **2**, **4**, and **6** are aromatic.
- __ D. **1** is nonaromatic.
- __ E. **5** is antiaromatic.

Rationale:

Chapter 15 Problem 36

Answer Key

"Grade or Education" = 1

CHEM 2261/01 Summer 12 Exam 4 Chapters 10, 11, 12, 15

- 1. A
- 2. D
- 3. D
- 4. D
- 5. C
- 6. C
- 7. B
- 8. C
- 9. B
- 10. A
- 11. D
- 12. A
- 13. E
- 14. B
- 15. C